I-61

PENTAFLUOROOXYTELLURIUM SUBSTITUTED FLUOROCARBONS

Carl J. Schack* and Karl O. Christe

Rocketdyne, A Division of Rockwell International Corp., Canoga Park, CA 91304 (U.S.A.)

Pentafluorooxytellurium substituted fluorocarbons (TeF₅0R_f), a previously unknown class of compounds, have been prepared by the reactions of either TeF₅0Cl or TeF₅0F with fluoroolefins. The addition products are low volatility colorless fluids. Surprisingly, the hypofluorite reacts more controllably and in higher yield (70-85%) than the hypochlorite (20-30%), wherein by-product forming interactions predominate. Addition of TeF₅0F to the double bonds of unsymmetrical olefins results in isomeric products. Details of the syntheses and the characterization of these compounds will be presented. A comparison of the properties of the perfluorocyclopentene adducts $XF_50C_5F_6$ will be made for the series X = S, Se, Te.

I-62

SELENIUM-NITROGEN AND TELLURIUM-NITROGEN COMPOUNDS

H. Hartl, P. Huppmann, D. Lenta, H. Oberhammer, K. Seppelt* and J. Thrasher

Freie Universität, Fabeckstrasse 34–36, 1000 Berlin 33 (F.R.G.)

Te-N and Se-N compounds are notoriously unstable. However, starting with $\rm H_2N$ -TeF $_5$ or $\rm (CH_3)_3Si-NH-TeF_5$ a variety of tellurium nitrogen compounds have been prepared, such as $\rm F_5TeN=SF_2$, $\rm F_5Te-N=PF_3$, $\rm F_5Te-NCl_2$ a.o. A crystal structure is given of $\rm F_5Te-N=WCl_4$, and an electron diffraction structure of $\rm F_5Te-N=C=0$. Whereas $\rm F_5S-N=C=0$ has a similar structure, $\rm F_5Se-O-C=N$ appears as cyanate! The first selenium-nitrogen double bond systems have been prepared with $\rm F_5Te-N=SeCl_2$ and $\rm F_5Te-N=SeF_2$.